
Basic Concepts in 
Kubernetes and Istio



Kubernetes

• Kubernetes (aka. K8s) is an open-
source system for automating 
deployment, scaling, and 
management of containerized 
applications.



Kubernetes

Features

• Orchestrate containers across multiple hosts

• Make better use of hardware

• Control and automate application deployments and updates

• Mount and add storage to run stateful apps

• Scale containerized applications and their resources

• Declaratively manage services

• Reliability guarantee of applications



Kubernetes

Core Concepts

• Kubernetes cluster: k8s system runs as a cluster, every cluster has at 
least one node

• Master: the machine that controls Kubernetes nodes

• Node: a node is a worker machine in k8s, that run containerized 
applications
• Kubelet: an agent makes sure that containers are running in a Pod

• kube-proxy

• Container Runtime



Kubernetes Cluster Components



Kubernetes

Core Concepts

• Pod: the basic execution unit of 
k8s application
• Pod is a group of containers

• Each Pod is meant to run a single 
instance of a given application 

• All containers in a pod share the 
same resources (network, storage)

• Stateful (StatefulSets) & stateless



Kubernetes

Core Concepts

• Service: an abstraction of a set of application runs on pods
• Other applications can’t access pods directly

• Every pods in a service is the same, no matter where it is

• Kubernetes service proxies automatically get service requests to the right pod

Node

API Server Proxy

Backend Pod 1

Backend Pod 2

Backend Pod 3



Service Mesh

• Background: Hard to maintain service-to-service communication 
between microservices

• Service Mesh is a way to control how different parts of an application 
interaction with each another

• Service Mesh’s requirements can include discovery, load balancing, 
failure recovery, metrics, and monitoring

• Service mesh also often has more complex operational requirements, 
like A/B testing, canary rollouts, rate limiting, access control, and end-
to-end authentication



How microservices in Service Mesh communicate with each other



Istio

• Traffic management

• Security

• Observability



Istio

• Traffic management
• Relies on Envoy proxies (sidecar)

• Istio will connect to service discovery system, and detects the services and 
endpoints in that cluster

• Each service workload has a load balancing pool

• Envoy proxies will distribute traffic to instance in the pool



Istio

• Traffic management: Virtual Services 
• Configure how requests are routed to a service within an Istio service mesh

• Each virtual service consists of a set of routing rules

• Making Istio’s traffic management flexible and powerful

Backend Service V1

Backend Service V2

Virtual Service

80% Traffics

20% Traffics

Gateway



Istio

• Traffic management: Gateway
• Manage inbound and outbound traffic for your mesh

• Gateway configurations are applied to standalone Envoy proxies

Proxy

Gateway A
https, 443, HTTP
example.com

Gateway B
http, 80, HTTP
test.com

Virtual Service 1
Gateway=A

Virtual Service 2
Gateway=B

Traffics



Istio

• Traffic management: Destination Rules
• Configure what happens to traffic for the destination

• Define how traffic corresponds and load balance to real services or pods

Backend Service V1

Backend Service V2

Workload A
Version=1

Workload B
Version=1

Workload C
Version=1

Workload D
Version=2



Istio

• Traffic management: Service entries
• Add an entry to the service registry that Istio maintains internally

• Allows you to manage traffic for services running outside of the mesh

Istio Service Mesh

Database Service
(Service Entry)

Service A

DB Platform

DB

Another Platform

Microservice C

External Service C
(Service Entry)


